

Testing Differences in Glucose Profiles using AUC and Mixed Models

Presenter: Robbie A. Beyl, PhD

www.lacats.org

Problem Overview

Oral Glucose Tolerance test

- Subjects are given a glucose solution
- Glucose levels are measured at four time points

Oral Glucose Tolerance Test

The pathologist will give you: 75 ml glucose drink

Then ask you to: Wait 2 hours

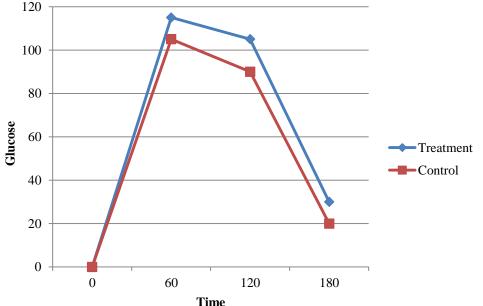
Goal

 Determine if treatment groups have different glucose profiles

Take blood and test glucose levels

values for each subject

 $y_{itk} - y_{i0k}$


 y_{itk} denotes the response for the i^{th} treatment at the t^{th} time for the k^{th} subject

Adjust responses using baseline

- i=1, 2
- *t*=0, 60, 120, 180

Notation

Area under the Curve

Area under the Curve


Traditionally used to test
differences in glucose profiles

Calculate AUC for each subject

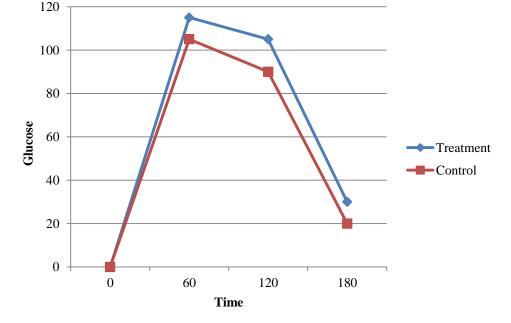
- Trapezoid rule
- $z_{ik} \approx y_{i2k} + y_{i3k} + \frac{1}{2}y_{i4k}$

Test $\mu_{z_1} = \mu_{z_2}$

• Two sample t-test

ASA Conference on Statistical Practice

Consider only t = 60, 120, 180


Mixed Model

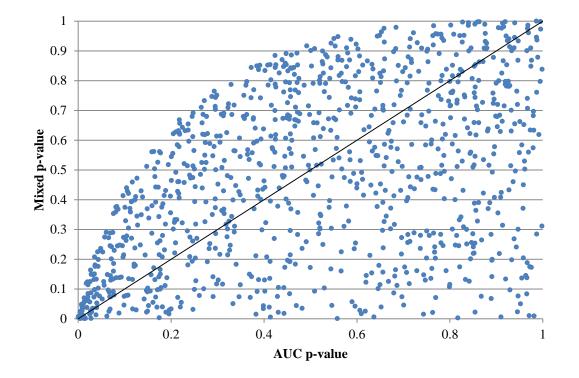
Mixed effect linear model

- $Y = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1(t) + \boldsymbol{\beta}_2(trt * t) + \boldsymbol{\varepsilon}$
- Unstructured covariance matrix for each subject

Test $\beta_2 = 0$

• F-test

Simulations


Simulation conducted under H₀:
$$\begin{pmatrix} \mu_{160} \\ \mu_{1120} \\ \mu_{1180} \end{pmatrix} = \begin{pmatrix} \mu_{260} \\ \mu_{2120} \\ \mu_{2180} \end{pmatrix}$$

- 25 subjects for each treatment
- 1000 replications
- Values for population mean and standard deviation at each time point based on data obtained from Pennington Biomedical Research Center

Simulations

	AUC	Mixed
Type I error	0.058	0.0062

ASA Conference on Statistical Practice



t Treatment Control 100	
60 104.4 110.3 ^{so} ₆₀	Treatment
	Control
180 70 30.5 20	
0 60 120 180 Time	

ASA Conference on Statistical Practice

Crossing Profiles

ASA Conference on Statistical Practice

Both methods can give vastly different p-value

 No cases where mixed p-value is high and a AUC p-value is low

Crossing Profiles

 P-values from mixed procedure are generally lower than those from AUC procedure

Future plans include investigating the power of these tests when crossing profiles occur

Authors

Robbie A. Beyl Assistant Professor Biostatistics Pennington Biomedical Research Center 6400 Perkins Rd. Baton Rouge, LA 70808 USA Robbie.Beyl@pbrc.edu Jeff H. Burton Assistant Professor Biostatistics Pennington Biomedical Research Center 6400 Perkins Rd. Baton Rouge, LA 70808 USA Jeffrey.Burton@pbrc.edu William D. Johnson Professor Biostatistics Pennington Biomedical Research Center 6400 Perkins Rd. Baton Rouge, LA 70808 USA William.Johnson@pbrc.edu

Supported by 1 U54 GM104940 from the National Institute of General Medical Sciences of the National Institutes of Health which funds the Louisiana Clinical and Translational Science Center.

ASA Conference on Statistical Practice