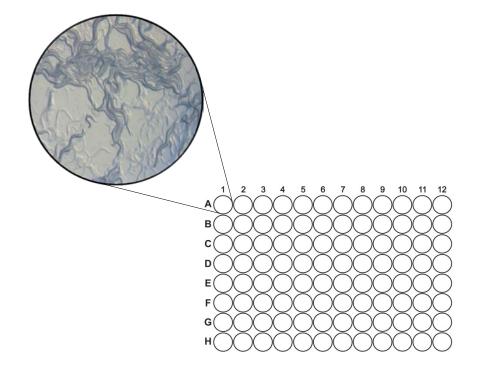


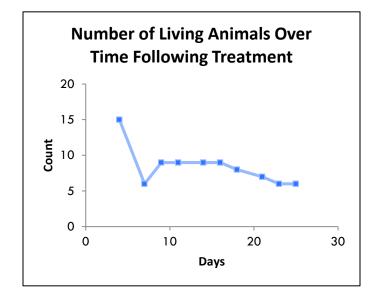
Mixed effects model for comparing treatments that alter length of life in the *C. elegans* model

Jeff H. Burton, Ph.D.

www.lacats.org



- Caenorhabditis elegans
 - **G** Free-living, non-parasitic, transparent nematode
 - Model system commonly used in laboratory studies
 - Time- and cost-efficient
 - Important for translational studies
 - Genome similar to humans



- □ Aging / lifespan studies
 - 96-well plate
 - Treatments and replicates arranged in rows and columns
 - Each well contains numerous specimens
 - Record counts of number alive in each well at specified time points

- Goal is to estimate effect of treatments on lifespan
- □ Issues affecting analytic plan
 - Cannot track survival times of individuals
 - Animals may reproduce
 - Cannot differentiate between existing animals and newly birthed animals
 - Can only measure counts of live animals at each time point
 - Important for translational studies
- □ Traditional survival analysis not appropriate

Alternative

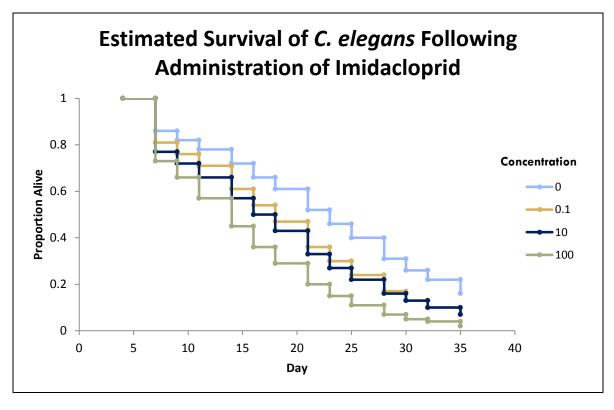
$$\log\left(\frac{\pi_{ij}}{1-\pi_{ij}}\right) = x_{ij}\beta, \qquad i = 1, \dots, N, \qquad j = 1, \dots, T$$

- □ Suggested analysis
 - Generalized linear model (logit model)
 - Models the natural log of the odds of being alive
- D Model definition
 - □ *N* is number of experimental units (wells)
 - **T** is number of time points at which experimental units are observed
 - **\square** π_{ii} is the probability of being alive in well *i* at time *j*
 - x_{ij} is the *p*-dimensional row vector of covariates for well *i* at time *j*
 - \square β is *p*-dimensional column vector of fixed effects parameters

- Wish to estimate the probability of survival of *C. elegans* following exposure to various concentrations of the insecticide Imidacloprid
 - Four concentrations are investigated
- Experimental setup
 - Groups of worms are added to wells
 - Each well contains a solution of one of the four insecticide concentrations
 - Starting counts of worms are similar, but are not the same in every well
 - Justification for use of proportions rather than counts
 - Number of living worms in each well is observed and recorded repeatedly at pre-determined days

Illustration

$$\log\left(\frac{\pi_{ij}}{1-\pi_{ij}}\right) = x_{ij}\beta, \qquad i = 1, \dots, N, \qquad j = 1, \dots, T$$


- D Model definition
 - *N* = 96, *T* = 14
 - $x_{ij} = (1 \quad g_i \quad t_j \quad g_i * t_j)$
 - First column represents intercept
 - g_i is indicator variable for treatment group of well i
 - t_j is time point j

- Logit model fit using SAS PROC GLIMMIX
 - Parameter estimates output from this models can be used for calculating surrogates of estimated survival probabilities

•
$$\hat{\pi}_{ij} = \frac{\exp(x_{ij}\hat{\beta})}{1 + \exp(x_{ij}\hat{\beta})}$$

Graph of Results

□ Traditional survival analysis is not appropriate when:

- Data are observed at group-level
- Individuals can not be tracked
- Use generalized linear model for this setting
 - Observed response is proportion of living subjects over time
 - Logit link function models the natual log of the odds of being alive
 - Avoid need to make assumptions of traditional survival analysis
- Estimated binomial probabilities can be used as surrogates for estimated survival probabilities

Authors

Jeff H. Burton Assistant Professor Biostatistics Pennington Biomedical Research Center 6400 Perkins Rd. Baton Rouge, LA 70808 USA Jeffrey.Burton@pbrc.edu Robbie A. Beyl Assistant Professor Biostatistics Pennington Biomedical Research Center 6400 Perkins Rd. Baton Rouge, LA 70808 USA Robbie.Beyl@pbrc.edu William D. Johnson Professor Biostatistics Pennington Biomedical Research Center 6400 Perkins Rd. Baton Rouge, LA 70808 USA William.Johnson@pbrc.edu

Supported by 1 U54 GM104940 from the National Institute of General Medical Sciences of the National Institutes of Health which funds the Louisiana Clinical and Translational Science Center