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ABSTRACT

Motivation: Normalization is critical in DNA copy number analysis.

We propose a new method to correctly identify two-copy probes

from the genome to obtain representative references for normalization

in single nucleotide polymorphism arrays. The method is based on a

two-state Hidden Markov Model. Unlike most currently available

methods in the literature, the proposed method does not need to

assume that the percentage of two-copy state probes is dominant

in the genome, as long as there do exist two-copy probes.

Results: The real data analysis and simulation study show that the

proposed algorithm is successful in that (i) it performs as well as the

current methods (e.g. CGHnormaliter and popLowess) for samples

with dominant two-copy states and outperforms these methods for

samples with less dominant two-copy states; (ii) it can identify the

copy-neutral loss of heterozygosity; and (iii) it is efficient in terms of

the computational time used.

Availability: R scripts are available at http://publichealth.lsuhsc.edu/

PAIR.html.

Contact: zfang@lsuhsc.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Copy number alterations (CNAs) have been associated with

many genomic disorders (Fanciulli et al., 2007; Yang et al.,
2007). Insertion or deletion of DNA sequences can directly alter

the gene expression levels, and thus potentially cause genetic dis-
eases (McCarroll et al., 2007). For example, in a St. Jude study

of4200 B-progenitor andT-lineage acute lymphoblastic leukemia

(ALL) patients,450 recurring regions of CNAs were identified.
In addition, many of these recurring CNAs were specific to dif-

ferent subtypes ofALL, associated with prognosis, indicating that
resistance to therapy in ALL might be caused by specific genetic

changes (Mullighan, 2009). In another St. Jude study, deletion,
amplification and other types of CNAs were found to be in 40%

of B-progenitor ALL cases (Mullighan et al., 2007).
Facilitated by the Human Genome Project, the development

in comparative genomic hybridization (CGH) array technology
has made it indispensable for CNA study. Among many types

of CGH arrays, the single nucleotide polymorphism-CGH

(SNP-CGH) array is widely used because of its high resolution

and its ability to provide genotype estimates (Curtis et al., 2009;

Scharpf et al., 2008; Ylstra et al., 2006). Although advances in

next-generation sequencing are rapidly changing the landscape

of genetics, the SNP-CGH array offers a cost-effective way in

CNA studies, complementary to next-generation sequencing

(Przybytkowski et al., 2011). In addition, the SNP-CGH array

has advantages in voluminous, publicly available data and a

wealth of data analysis tools. Integrative analysis of genomic

data generated from different platforms requires SNP-CGH

data of high quality.
The raw signals from the SNP-CGH array are inherently noisy

because of sampling and/or technical variation. To reduce such

noise, the logarithms of signal intensity ratios between tumor and

normal samples from the same individual are usually used for

CNAs detection (Mullighan et al., 2007). A large portion of the

sampling variation may be removed this way because of strong

similarities between paired tumor and normal samples. In add-

ition, tumor/normal pairs are expected to be run in the same

laboratory and in the same batch to remove experimental vari-

ations as much as possible.

Loss of heterozygosity (LOH) describes the loss of normal

function of one allele in a gene, and LOH detection plays an

important role in discovering DNA segments that harbor

tumor suppression genes (Staaf et al., 2008). Copy-neutral LOH

(cnLOH) refers to duplication of one of the two alleles and con-

currently loss of the other allele, so that there is no change in a

DNA copy number. As a result, it is difficult to detect cnLOH

by conventional copy number measurements. On the other hand,

the methods for accurate cnLOH detection often require both

tumor and control samples from the same patient.
Many statistical models and algorithms have been proposed

for CGH array-based CNA analysis (Fridlyand et al., 2004;

Hupé et al., 2004; Marioni et al., 2006; Olshen et al., 2004).

Normalization is critical for obtaining biologically meaningful

results. An appropriate normalization method should be able

to substantially remove systematic variations, while signal

changes because of biological alterations are preserved. Some

of the early CGH data normalization methods directly adopt

those developed for microarray gene expression, such as

Quantile normalization, Rank-invariant set normalization,

Lowess normalization and so forth (Chen et al., 2008; Pounds

et al., 2009). A fundamental assumption in these algorithms is*To whom correspondence should be addressed.
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that the distributions of the log-signal intensities from all samples
are the same. However, this assumption may not hold in a CNA
study. For example, nearly all solid tumor cancers exhibit

whole-chromosome gains/losses (De Vita et al., 2008), and the
proportion of gain/loss probes in the tumor genome can vary
substantially from sample to sample. These translate into sub-

stantial differences in distributions of log signal intensities of
different tumor samples. Therefore, directly applying normaliza-
tion algorithms developed for gene expression data might result

in ‘over-normalization’ of segments of CNAs (van Houte et al.,
2009). To address this problem, several methods have been pro-
posed specifically for CGH array normalization. For example,

based on genotype calls and log-ratio of signal intensities, a ref-
erence alignment method identifies chromosomes in two-copy
state, which are then used as internal references in normaliza-

tion/alignment (Pounds et al., 2009). One problem in this method
is that the number of reference chromosomes identified is usually
small, and thus they might not represent the two-copy probes
well. Another method, popLowess, identifies probes in two-copy

state using k-means clustering on the segmented mean values,
and subsequently normalizes the data by Lowess regression
using probes identified as references (Staaf et al., 2007). The

weakness of this approach lies in that only coarse separation
can be achieved because of probe pre-selection, and that
k-means clustering requires a pre-determined number of clusters.

The ridge-tracing normalization method normalizes CGH data
by applying ridgeline regression on the highest ridgeline of a 2D
log-intensity distribution and then using the expectation maxi-

mization algorithm to centralize the copy number ratio. This
method assumes that the most frequently occurring copy
number probes correspond to the two-copy states (Chen et al.,

2008). More recently, iterative normalization strategies, such as
ITALICS (for one-channel array) and CGHnormaliter (for
two-channel array), have been proposed (Rigaill et al., 2008;

van Houte et al., 2009). In both cases, segmentation is the key
step, and the subsequent normalization depends on the results of
segmentation. TumorBoost (Bengtsson et al., 2010) was de-

veloped to normalize the allele B fraction in tumor, whereas
total copy number signals are not normalized.
In this article, we propose a new normalization procedure for

SNP array data. This is motivated by the following reasons.
(i) Although applying paired samples in experimental design
could substantially reduce noise in data, estimating the true

copy number is often complicated by other experimental and
biological factors, such as imperfect dissection of the primary
tumors, the existence of the multiple clones in the tumor cell

population, ploidy of a sample, the spatial signal variation and
so forth. These factors can reduce the expected signal–noise ratio
(SNR) and make it difficult to accurately estimate the true under-

lying copy number (Fridlyand et al., 2004). As a result, the con-
ventional segmentation methods such as circular binary
segmentation (CBS) (Olshen et al., 2004), which works well in

partitioning a SNP sequence into segments of the same under-
lying copy number, do not provide estimation of the underlying
copy number for each segment. (ii) Almost all current normal-

ization methods do not take into consideration the existence of
cnLOH. Since the mean value of probes in a cnLOH segment
may be slightly different (but not significantly) from the mean

value of probes in segments with true normal two-copy state, it is

difficult to identify and subsequently remove them from the
reference probe set. Therefore, it is necessary to develop new
strategies that have strong statistical power in distinguishing

probes in two-copy state from those having CNAs and simultan-
eously take into account the existence of cnLOH.
We will briefly present Affymetrix SNP arrays in the next

section, and then describe the proposed algorithm in two parts.
The first part is to partition probes into the segments of UMS

(uni-modal state, defined in Section 2) or BMS (bi-modal state)
using a Hidden Markov Model (HMM). The second part is to
apply the CBS segmentation method on the piecewise average

log-ratio (PAlog-Ratio, defined in Section 2.3) to separate probes
in two-copy state and other even-number copy number states.
The application of our method on a publicly available dataset,

followed by a comparison of our method with two currently
available methods, is presented in Section 3. At the end of the

article, we discuss the advantages and limitations of our method
and possible improvements.

2 METHODS

2.1 Affymetrix GeneChip Mapping 500K array

There are several widely used SNP-CGH array platforms, including

Affymetrix genome-wide human SNP Array 5.0, GeneChip� Mapping

500K Array and Illumina Infinium whole-genome SNP array. In this

article, we will focus on the Affymetrix GeneChip� Mapping 500K

array. But the method we are proposing can be applied to data obtained

from other platforms as well.

The GeneChip� Human Mapping 500K Array Set consists of Nsp

and Sty arrays. These two arrays are digested with NspI restriction and

StyI restriction enzymes separately, each having the capacity to interro-

gate �250000 SNPs. At the SNP level, each SNP is interrogated by 6–10

probe quartets, each of which is composed of a 25 base pair (bp) perfect

match (PM) oligonucleotide probe and a mismatch (MM) probe for

alleles A and B (Rigaill et al., 2008). There are 24–40 different 25 bp

oligonucleotide probes per SNP.

We first define the log ratios of the PM probes A and B for SNP i of

the tumor and normal samples as,

Ti ¼ log2

Pni
j¼1 TðAÞij

ni
� log2

Pni
j¼1 TðBÞij

ni
and

Ci ¼ log2

Pni
j¼1 CðAÞij

ni
� log2

Pni
j¼1 CðBÞij

ni

where TðAÞij and TðBÞij (CðAÞij and CðBÞij) are the raw intensities of the PM

probes A and B in the jth probe quartet for SNP i of the tumor (paired

normal) sample, respectively. As explained in Irizarry et al. (2003), we will

only use the PM probe data in our method. Further, using the PM probes

only will allow our method to be readily used on newer generations of

SNP arrays, where only PM probes are included (Carvalho et al., 2007).

Genotyping calls for normal samples usually can achieve 99% accur-

acy (Scharpf et al., 2008), thus, it is feasible to accurately identify hetero-

zygous probes in normal samples. Hence, we can define the allelic log

ratios (alog-Ratio) of the PM probes A and B for heterozygous SNP i of

the paired tumor and normal samples as:

T
ðhzÞ
i ¼ log2

Pni
j¼1 T

ðhzÞ
ðAÞij

ni
� log2

Pni
j¼1 T

ðhzÞ
ðBÞij

ni
and

C
ðhzÞ
i ¼ log2

Pni
j¼1 C

ðhzÞ
ðAÞij

ni
� log2

Pni
j¼1 C

ðhzÞ
ðBÞij

ni

respectively. The difference of alog-ratios (dalog-Ratio) between the

paired tumor and normal samples is defined as, O
ðhzÞ
i ¼ T

ðhzÞ
i � C

ðhzÞ
i .
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Additionally, we define the log-intensities of the paired tumor and normal

samples for SNP i as:

T0i ¼ log2

Pni
j¼1 TðAÞij þ TðBÞij

� �
ni

and C0i ¼ log2

Pni
j¼1 CðAÞij þ CðBÞij

� �
ni

and the log-Ratio as: Yi ¼ T0i � C0i. The corresponding log-ratio for het-

erozygous SNP i is denoted as Y
ðhzÞ
i : Note that, in calculating alog-Ratio

of the PM probes, we first take the average of the raw signal intensities of

all quartets of a probe, then take the logarithm, instead of averaging after

taking the logarithm of the raw intensities. We explained in the

Supplementary Data that the normality assumptions on dalog-Ratio

and log-Ratio hold in both cases (see S1 in Supplementary Data for de-

tails). In practice, by averaging the raw signal intensities first, we observed

less pronounced saturation effects (data not shown).

In addition, under an ideal situation (Gardina et al., 2008), the rela-

tionship between dalog-Ratio and log-Ratio for heterozygous probes with

one-copy gain/loss can be expressed as (see S2 in Supplementary Data for

details):

E O
ðhzÞ
�A

� �
� log2 2E YðhzÞ

�Að Þþ1 � 1
� �

,

where E O
ðhzÞ
�A

� �
or E Y

ðhzÞ
�A

� �� �
is the expected change(s) in dalog-Ratio

(or log-Ratio) of heterozygous probes with one-copy gain(þ)/loss(�)

comparing with normal two-copy heterozygous probes. By using

dalog-Ratio instead of B allele frequency (BAF) in our proposed

method, we can avoid the unnecessary data manipulation as required

for computing BAF values; in the meantime, no useful information is lost.

Next, we will present our proposed method, the PAIR algorithm,

which consists of two parts. Part I applies a two-state HMM model

on dalog-Ratio values to coarsely identify probes in two-copy state, and

then Part II refines the results obtained from Part I by using CBS

segmentation.

2.2 The PAIR algorithm—Part I: partition probes into

UMS and BMS using HMM model

The HMM approach is intrinsically suitable for analyzing data with un-

observable (missing) variables—the hidden states. In general, a discrete

state HMM with continuous output includes the following components

(Fridlyand et al., 2004; Rabiner, 1989).

(i) Let K be the number of hidden states (discrete). In this article, we

will consider a Markov process with two states (K¼ 2), with S1
being the UMS, including all genotypes that have equal number

of A and B alleles (i.e. 00, AB, AABB, AAABBB and so forth),

and S2 being the BMS including all other genotypes (see S3 in

Supplementary Data for details).

(ii) Let �1 and �2 be the initial probabilities of the two states in (i),

where �1 þ �2 ¼ 1. It has been shown that for HMM, with a

continuous distribution output, the initial values for � and the

state transition probability matrix T (defined next) can be chosen

arbitrarily (Rabiner, 1989). Thus, we can assign, for example,

�1 ¼ 0:8, and �2 ¼ 0:2 as the initial probabilities for the two

states, given that the two-copy state in most cases dominates.

However, assigning any other moderate values would be

acceptable.

(iii) Denote Tmn ¼ P st ¼ Smjst�1 ¼ Snð Þ, 1 � m, n � K, and the state

transition probability matrix T ¼ Tmnf g. We assigned a small

value (0.0001) to the probability of changing from UMS to

BMS (that is,T12 ¼ 0:0001) on the assumption that there are

on average a few to around dozens of CNAs in the whole

genome of a tumor sample. Consequently, the probability of

staying in the UMS is 0.9999. Further, to avoid ‘over-

normalization’ of probes with copy number gain/loss, and also

to take into account the often large number of reference

two-copy state probes used in normalization, we are prone to

be conservative in calling a probe inUMS versus BMS. Thus, we

assigned an even smaller value (0.00001) to the probability of

changing from BMS to UMS (T21 ¼ 0:00001).

Denote b1(O) and b2(O) as the emission probabilities for UMS and

BMS, respectively. In our HMM model, the observation O is the differ-

ence of allelic log-Ratio of the heterozygous probes. Further, under the

normality assumption of dalog-Ratio, b1(O) is a normal density with

�¼ 0, and variance �2, and b2(O) is the density of a mixture of two

normal distributions (BMS) with means � and ��, and the same com-

ponent variance �2. Here, we also assume that the two modes of the BMS

have equal weight because we do not expect an association between allele

type and CNAs, and thus allele A is affected as often as allele B (see S3 in

Supplementary Data for details). In addition, we assume the variance of

b1(O) and the component variances of b2(O) are the same for the case of

one-copy gain situation for simplification. Note that the component vari-

ances of b2(O) can be larger for other types of CNAs. However, this is

not a concern for our model, as in those situations, � is much larger, and

a moderate change in component variance does not affect UMS and

BMS partition (see Supplementary Fig. S1).

Given the HMM, we used Viterbi algorithm (Rabiner, 1989; Viterbi,

1967) to compute the probability of the most probable state sequence.

The distribution of probes that are in the BMS may be complicated.

For example, there may be tumors that simultaneously have, say, seg-

ments of one-copy gain, one-copy loss, cnLOH and two-copy gain. As a

result, a bi-modal distribution would not be sufficient to model it.

However, among these gains/losses and cnLOH, one-copy gain is the

most difficult one to detect (see S4 in Supplementary Data), except for

some minor clone caused by CNAs that might not be detectable at all.

Thus benefiting from this inequality, algorithms that detect one-copy gain

will automatically detect other types of odd-number gain/loss, cnLOH

and certain types of even-number gain/loss.

To detect segments of one-copy gain, we applied a HMM with three

iterations. In the first iteration, we set the initial values for the variance of

b1(O) and the component variance of b2(O) in the HMM equal to the

sample variance (�20 ) of the whole sequence of observations (dalog-Ratio

values). When there is none or only focal gains/losses, this sample vari-

ance is supposed to be close to the true variance. Otherwise, when there

exist large segments of gain/loss, the value of �20 will be bigger than the

true variance of probes in UMS, but smaller than the true mixture dis-

tribution variance of probes in BMS. As a result, probes with larger

variance tend to fit the BMS better, and probes with smaller variance

tend to fit the UMS better. Thus, a meaningful initial partition can be

obtained with such choice of the initial values of variances. In the second

iteration, we used the estimation of the variance of probes in the UMS

(detected from iteration 1) as the input in theHMMmodel. And the third

iteration is a repeat of the second iteration. Note that, when the SNR is

high, the two states can be easily separated, and when the SNR is low, the

power for distinguishing the two states from each other depends more on

the means (� and ��) of the two component distributions. Theoretically,

additional iterations may be run until a convergence criterion is met.

However, in practice, we observed that two or three iterations are usually

sufficient to get a decent normalization result.

We comment that to have large power to identify one-copy gain, it

makes sense to set � as small as possible while controlling false-positive

rate. Based on our simulation, by setting � at�2 standard deviations of a

sequence of random normally distributed observations, we can control

the false-positive rate at a 5% level. In practice, we noticed that setting �

close to any value between 1.9 and 2 standard deviations of the whole

sequence (for first iteration), or observations in UMS (detected by previ-

ous iteration), can achieve decent results of separation between UMS and

BMS, even for noisy samples. And minor changes in �, such as �0.05,

would not affect the separation result except for some focal gains/losses.

This is in concordance with Supplementary Data S7, where we show that
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the expected dalog-Ratio value of one-copy gain is41 standard deviation

of the two-copy probes if the sample contamination rate is �12%. Note

that, we made conservative assumptions in Supplementary Data S7.

In practice, we were able to obtain good separation of UMS and BMS

for all samples we tested.

Detection of homozygous deletions (HDs) is much easier and can be

achieved by applying the same HMM model to the dalog-Ratios of

all probes (both homozygous and heterozygous probes). The variances

of HD segments could be as small as 1/5 of the variances of other

segments, thus these HDs could be easily identified in one iteration (see

Supplementary Fig. S2).

As the final step of Part I, we mapped the probes in BMS back to the

original whole sequence (including both homozygous and heterozygous

probes) and considered the probes within two consecutive BMS probes as

CNA probes. After excluding these CNAs and HD probes, all remaining

probes are called the initial reference set.

2.3 The PAIR algorithm—Part II: detecting probes

in two-copy state by applying CBS on piecewise

average log-ratio

Let �i, i ¼ 1, 2, :::, l, be the sequence of points where copy number

changes occur. Assume that Yi is a sequence of independent random

variables with normal distribution Yi � Nð�i, �
2Þ, where

�i5t � �iþ1, i ¼ 0, 1, 2, . . . , l, and 0 ¼ �05�15 � � �5�lþ1 ¼ T: In this

article, the variables Yi represent the logarithm of signal-intensity ratio

described in Section 2.1.

Divide the whole sequence of random variables into subsequences of

equal size, with m random variables (elements) in each subsequence (the

last one might have less than m random variables). We then obtain a new

sequence of random variables,

Mp ¼
Xminðpm,TÞ

j¼1þðp�1Þm

Yj, p ¼ 1, 2, :::, T
�
:m

� �

the average of all random variables within each subsequence, and term it

the piecewise average log-ratio (PAlog-Ratio). Here, Mp was calculated

by taking the average of m (¼ 100) consecutive log-Ratio values in the

whole sequence, including homozygous ones. Note that the reasons to use

m¼ 100 are 2-fold: (i) the computation is much faster and (ii) the bias in

segment-mean estimate introduced by using PAlog-Ratios instead of raw

log-Ratios is negligible.

The execution of Part II started with a modality test (Hasselbla, 1966)

on PAlog-Ratios for all probes in the initial reference set. Based on BIC

(Schwarz, 1978), if a uni-modal distribution fits well, all probes in the

initial reference set would be two-copy probes and will be used as the

references in subsequent normalization. Otherwise, if a multiple-modal

distribution fits well, the estimated mean log-Ratio of the component

distribution with the smallest mean would be used as the mean of

two-copy probes. Next, after applying CBS segmentation to

PAlog-Ratio values (HD and one-copy loss probes have been excluded

by Part I), we removed any segments whose mean log-Ratio values are

greater than the median of the mean log-ratios of one-copy gain segments

(see S5 in the Supplementary Data for the criteria to detect segments of

one-copy gain/loss) and used the probes remaining in the initial reference

set as the reference set. In cases where only segments of one-copy loss

exist, we imputed the one-copy gain value by multiplying the absolute

change of one-copy loss by 0.58. If neither a one-copy gain nor a

one-copy loss segment was detected in Part I, we simply used a 95%

confidence interval about the two-copy mean as the cut-off values.

2.4 Normalization via spline smoothing

After identifying probes in the two-copy state, normalization was carried

out using an M–A plot, where the log-Ratio (M) was plotted against the

log mean intensity (A). Note thatA is the average of tumor and the paired

normal sample log intensities (Smyth and Speed, 2003). We obtained M

and A values for each probe, and set the median of M values of the

probes (all probes for normal sample, and two-copy probes only for

tumor sample) as 0. Then, we used the M and A values of probes in

the two-copy state to create a spline smoothing curve (Chambers et al.,

1992). The corrected M values for all probes based on the smoothing

curve are the normalized log-Ratio values, where the median of normal-

ized M values of the probes in the two-copy state equals 0.

2.5 An option for normalizing noisy data

We have assumed that the distributions of the log-intensities of A and B

alleles of heterozygous SNPs on the same array are the same. In other

words, the log-intensities of probes with genotypes AA, AB and BB are

supposed to have the same distribution. However, in practice, they may

be somewhat different because of unexpected sources of variation.

For example, cnLOH (exclusively AA or BB genotypes) should have

the same mean log-Ratio as those of normal two-copy segments

(including probes with AA, AB and BB genotypes), but minor differences

do exist because of the fact that log-intensities of probes with AB geno-

type can be higher/lower than those of probes with AA or BB genotype.

To correct this, especially for arrays with choppy signals, we used spline

smoothing to normalize tumor and normal log-intensities separately

before normalizing the log-Ratios. To normalize log-intensities, we

plotted the log intensity of the tumor (or normal) sample versus the

log-ratio of A and B alleles of the tumor (or normal) sample.

2.6 PAIR algorithm flow chart

A flow chart outlining our procedure can be seen in Figure 1.

2.7 Simulation study

To evaluate how the proportion of two-copy probes affects the normal-

ization result, we simulated the SNP array data by re-sampling one-copy

gain/loss and two-copy probes from a tumor-control pair, where three

normalization methods, CGH-normaliter, PAIR and popLowess, gave

similar normalization results. Specifically, we first randomly filled the

whole genome with one-copy gain/loss probes, such that all probes in

each chromosome (or chromosome arm) have the same copy number—

either one-copy gain or one-copy loss. To maintain the correlation

Fig. 1. Flow chart of the PAIR normalization
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structure, the log-intensities of alleles A and B for the paired tumor and

normal samples and the genotype for the normal sample of the same SNP

were sampled simultaneously. Then, we randomly replaced some of the

one-copy gain/loss segments with the two-copy probes to have a

pre-defined proportion of two-copy probes in the genome. That is, we

randomly picked a chromosome (or arm) and filled it with two-copy

probes and repeated this process until the pre-defined proportion was

reached. Finally, we applied all three normalization methods to each

simulated data, and calculated the rate of the two-copy probes correctly

identified by each method. These rates are presented and compared in

Section 3.6.

3 RESULTS

We demonstrated the performance of PAIR algorithm by apply-

ing it to a public dataset, where 114 multiple myeloma samples
were analyzed by Affymetrix 500K array set (Nspþ Sty).
Among them, 80 samples have matched peripheral blood DNA

performed on the same array types. These data were generated in
Walker et al. (2010) and can be downloaded from the public
domain GEO with access ID, GSE21349.

3.1 Partitioning heterozygous probes into segments of

UMS and BMS

By Part I of the PAIR algorithm, a two-state HMM model was

applied to dalog-Ratio, and the heterozygous probes were parti-
tioned into segments of UMS and BMS. The partition result is
presented in Figure 2. In Figure 2a, probes in black color are
those that follow a uni-modal distribution (the UMS segments),

and probes in red color are those that follow a bi-modal distri-
bution (the BMS segments). It is clearly indicated by the 95%
confidence lines (in red) that probes in the UMS segments have

smaller variance than those in the BMS segments do (see S6 in
Supplementary Data for details). Note that any two-copy probe,
if it exists, has to be within one of UMS segments. This is the key

to ensure no misclassification of probes in two-copy state or in
one-copy gain/loss. On the other hand, a UMS segment might
include probes with certain types of even-number gain, such as

AABB, AAABBB and so forth. This justifies the necessity of
Part II of the PAIR algorithm. For example, from Figure 2c—
the plot of log-Ratios of the whole-genome with BMS probes

being colored in red, the majority of probes on chromosomes
2–4, 7–12, 14, 16–17 and 19–22 are in UMS, but the probes
on chromosome 9 are in two-copy gain instead of two-copy

state. The explanation for chromosome 9 being partitioned
into the UMS segment is that the genotypes of heterozygous
probes on this chromosome are presumably AABB, instead of
AAAB/ABBB.

3.2 Identifying probes in two-copy state from all probes in

the initial reference set

By Part II of the PAIR algorithm, we aim to separate probes in
two-copy state from the segments of the initial reference set.
Based on the fact that the mean log-Ratio of probes in a
two-copy gain segment is higher than that of probes in a

one-copy gain segment, we concluded by Part II that chromo-
some 9, which was originally partitioned into the initial reference
set, was a two-copy gain chromosome. In general, the segments

with copy number gain of higher magnitude can be excluded

from the reference set by Part II because their mean log-Ratios

are higher than those of one-copy gain segments. After applying

Part II, segments remaining in the reference set predominately

consist of two-copy probes. By subtracting the median of

log-Ratios of these two-copy probes from the raw log-Ratios of

all probes, we obtained the centralized log-Ratio values.
We comment that (i) it may be difficult to accurately identify

CNAs by conventional segmentation methods alone. For ex-

ample, chromosome 18 is in cnLOH (Fig. 2a), but it cannot be

detected by conventional methods (Fig. 2c) because cnLOH is

also two-copy. (ii) Although chromosomes 2–4, 16 and 17 are all

two-copy chromosomes, there is a drift in segment mean along

chromosomes (Fig. 2b). As a result, the segment means of

PAlog-Ratio values of probes on chromosomes 16 and 17 are

lower than those of probes on chromosomes 2–4 (the reference

cyan line represents 0). This may result in assigning incorrect

copy numbers to those chromosomes. In contrast, the

dalog-Ratio plot (Fig. 2a) is symmetric about 0 for all the

chromosomes, and the variations of dalog-Ratio values of

probes on chromosomes 2–4, 16 and 17 are among the smallest,

indicating that all these chromosomes are in UMS, and poten-

tially in two-copy state.
We applied Part I of the PAIR algorithm to achieve two goals:

(i) to identify segments that contain probes in two-copy state;

(ii) to detect segments of cnLOH, such as chromosome 18 and

Fig. 2. An illustration of applying PAIR algorithm to one of the paired

samples. (a) The application of Part I of the PAIR algorithm—segments

of UMS and BMS were outlined by the two standard deviation confi-

dence interval lines of each segment (in red). Probes in segments of UMS

have the smallest confidence interval (variance), that is, chromosomes 2–

4, 7–12, 14, 16, 17 and 19–22. Probes in segments of BMS have larger

variances of different scales owing to the different nature of gain/loss,

that is, probes on chromosome 5 and 15, and part of chromosome 6 has

one-copy gain, probes on chromosome 13 have one-copy loss and

chromosome 18 and part of chromosome 1 are segments of cnLOH.

(b) The application of Part II of the PAIR algorithm—CBS segmentation

was applied to the PAlog-Ratio. (c) The reflection of Part I UMS and

BMS partition on log-ratio values. The black and red colors represent

segments of UMS and BMS detected in Part I, respectively. Probes on

chromosome 9, which have two-copy gains, were largely in UMS. (d) The

reflection of applying CBS on log-ratio values. Chromosome 9 was

re-identified as a segment of two-copy gain by CBS segmentation.

Chromosome 18 and part of chromosome 1, both of which were

cnLOH, were not identified as CNAs
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part of chromosome 1 in the aforementioned example. In the
extreme cases where there are no two-copy probes in the whole

genome, some additional work is needed. A brief discussion can

be found in Section 4. Based on the fact that two-copy hetero-

zygous probes follow a uni-modal normal distribution, by parti-

tioning probes into UMS and BMS, we can confidently exclude

probes in BMS from the reference set. On the other hand, con-

ventional segmentation methods, such as CBS, were neither de-

signed to accurately assign the true underlying copy number to
segments that have the same copy number, nor to detect seg-

ments of cnLOH. For example, the mean log-Ratio values of

probes on chromosome 18 and a part of chromosome 1 are

close to those of probes in normal two-copy segments, thus it

is difficult to distinguish them from the normal two-copy probes.

Nevertheless, CBS (adopted in Part II) has greater power for

detecting higher-magnitude change of mean log-Ratio value.

In the aforementioned example, CBS provided satisfactory
result for detecting two-copy gains of chromosome 9.

3.3 Normalization by an M–A plot

The result of normalization (by an M–A plot) is presented in

Supplementary Figure S3. As a quicker alternative to Lowess

regression, spline smoothing was used in computing the correc-
tion curve. The advantage of using spline function over polyno-

mial regression is to avoid distortion, especially at the left and

right tails (Chen et al., 2008).

3.4 Comparing with CGHnormaliter, popLowess

normalization methods and others

The R/Bioconductor package ‘CGHnormaliter’ and a standalone

version of R code for popLowess were used to normalize the data

for the purpose of comparison. Normalized data were then seg-

mented using CBS to visualize the results. In many cases, three

algorithms, CGHnormaliter, PAIR and popLowess, generated

almost the same normalized data. However, when the proportion

of two-copy probes is not predominantly high, both
CGHnormaliter and popLowess may have difficulties in cor-

rectly centralizing the normalized data. Using the sample with

ID 303 as an example, our method (Fig. 3b) centralized the data

around the mean log-Ratio values of chromosomes 2, 3, 5, 7, 9,

15, 19 and 20. CGHnormaliter (Fig. 3c), however, centralized the

data around the mean log-Ratio values of chromosomes 1, 4, 6,

8, 10, 12–14, 16, 21 and 22. We highlighted those probes that

have AB genotype calls in normal, but AA or BB in tumor (see
the probes in red color in Figure 3; probes that do not have this

change are in black color). As most of the probes that have

heterozygosity loss are located in chromosomes 1, 4, 6, 8, 10,

12–14, 16, 21 and 22, we assume that these chromosomes are the

one-copy loss chromosomes.
PopLowess (Fig. 3d) was able to centralize the data similarly

to our method, the mean log-Ratio values of the reference

chromosomes, especially chromosomes 9, 15, 19 and 20, were

slightly different from 0. The possible reason is that the

k-mean cluster approach used in popLowess does not provide

precise estimates of cluster means.
In another sample, CGHnormaliter and PAIR obtained simi-

lar normalization results, but popLowess picked different

chromosomes as the reference (see Supplementary Fig. S4).

We also compared PAIR to other methods, such as Quantile
(Bolstad et al., 2003), Invariant Set (Li and Wong, 2001) and

ITALICS (see Supplementary Figure S5). The figure indicates

that PAIR is the method that is able to set ‘0’ at approximately
the median of a copy number population.

3.5 Optional normalization of tumor and normal

log-intensity separately

The allelic M–A plot of probes in two-copy state is theoretically

centered about a horizontal line, as the probes with AA, AB and

BB genotypes are supposed to have the same log-intensity

values. However, the real data often show that the pattern of
log-intensity values deviates from a horizontal line, the superim-

posed spline smoothing white lines in Figure 4a for a tumor

sample and c for the paired normal sample. Using paired samples

could normally neutralize the effect of such differences if the
pattern for the tumor sample is coincident with that of the

paired normal sample. Nevertheless, should the patterns for

the paired samples be more divergent, optionally normalizing
the log-intensities of tumor (based on the PAIR identified

two-copy probes) and the paired sample separately before nor-

malizing log-Ratios might be necessary to improve the quality of

normalization.
The effects of the optional normalizations are presented in

Figure 5, where we plotted the PAIR normalized log-Ratio
with or without the optional individual sample normalization

in a or b. Figure 5c and d are the normalization results after

applying CGHnormaliter and popLowess. Comparing a and b,

we can see that applying the optional normalization resulted
in a large reduction in the total number of segments detected

by CBS. The reduction was also substantial if comparing

with CGHnormaliter and popLowess normalization results.

Fig. 3. The comparison of normalization results from CGHnormaliter,

PAIR and popLowess algorithms. CBS segmentation profile was super-

imposed in yellow color. Probes in red color are those with AB genotype

in the paired normal, but AA or BB in tumor. (a) Applying CBS seg-

mentation on the raw log-ratio. The total number of segments was 70,

and the mean log-ratio of neither of the two dominating copy number

states was close to 0. (b) The PAIR normalized data. The total number of

segments was 40, and the mean log-ratio values of the segments in

two-copy state, that is, chromosomes 2, 3, 5, 7, 9, 15, 19 and 20, were

�0. (c) The CGHnormaliter normalized data. The total number of seg-

ments was 65, the mean log-ratio values of chromosomes, that is, 1, 4, 6,

8, 10, 12–14, 16, 21 and 22, were �0. (d) The popLowess normalized data.

The total number of segments was 50; however, the horizontal cyan line,

which indicates no CNAs, was slightly different from the mean log-ratio

values of chromosomes, that is, 9, 11, 15, 19 and 20, indicating there

might be some problems with the centralization process
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Furthermore, the white band (of mean log-Ratios) in Figure 5a is

narrower than those in b, c and d, indicating that optional nor-
malization may also be able to reduce the signal noise.

Furthermore, the effect of the optional individual sample
log-intensity normalization could also be seen from the

change in the mean log-Ratio of segments of cnLOH. We com-
pared calculating results by different methods (see S1 in

Supplementary Data) in Figure 6. For Figure 6a and b, the
intensities of A/B alleles were calculated by taking the averages

of the raw A/B allele intensities of all quartets for a probe, and

then the total log-intensity was the logarithm of the sum of A

and B allele intensities. For c and d, the log-intensities of A/B

alleles were calculated by taking the average of logarithms of the

raw A/B allele intensities of all quartets for a probe, and the total

log-intensity was the sum of the A and B allele log-intensities.

Figure 6a showed that the mean log-ratio of the cnLOH segment

was slightly different from those of the normal two-copy seg-

ments before individual normalization. The optional individual

normalization mitigated this difference (Fig. 6b). This effect was

much striking when comparing d and c. Note that for samples

that performed the optional normalization, segments of cnLOH

could be included in the reference set.

3.6 Simulation result

In Table 1, we present the simulation results of the numbers

of two-copy probes correctly and incorrectly identified by the

Fig. 5. The comparison of normalizations with/without the optional in-

dividual sample log-intensity normalization, as well as CGHnormaliter

and popLowess normalization. CBS segmentation profile was superim-

posed in white color. (a) The PAIR normalized log-Ratio with the

optional individual sample normalization. (b) The PAIR normalized

log-ratio without the optional individual sample normalization. (c) The

CGHnormaliter normalized log-ratio. (d) The popLowess normalized

log-ratio

Fig. 4. The M–A plots for the allelic log-intensities of the paired

samples—M is the log sum intensity of the two alleles, and A is the

difference of the log-intensities of the two alleles. (a) Tumor sample

(probes in two-copy state only) before log-intensity normalization.

(b) Tumor sample, after log-intensity normalization based on PAIR

identified two-copy probes. (c) The paired normal sample, before

log-intensity normalization. (d) The paired normal sample, after

log-intensity normalization

Fig. 6. The effect of the optional individual sample log-intensity normal-

ization on the segment of cnLOH. The CBS segmentation profile was

superimposed in yellow. (a) The segmentation result of PAIR normalized

data. (b) The segmentation result of PAIR normalized data after applying

the optional individual sample log-intensity normalization. (c) The seg-

mentation result of PAIR normalized data. (d) The segmentation result of

PAIR normalized data after applying the optional individual sample

log-intensity normalization

Table 1. The numbers of two-copy probes identified by three algorithms

2n probe

(%)

PAIR CGHnormaliter popLowess

F T pct. F T pct. F T pct.

5 30 162 84 192 0 0 192 0 0

10 0 225 100 221 4 2 225 0 0

20 0 205 100 199 6 3 203 2 1

30 0 140 100 97 43 31 75 65 46

40 0 200 100 14 186 93 0 200 100

50 0 219 100 0 219 100 0 219 100

60 0 102 100 0 102 100 0 102 100

70 0 75 100 0 75 100 0 75 100

80 0 50 100 0 30 100 0 30 100

Note: Simulations which caused program crash were not included.

F, false; T, true; pct, percentage of correctly identified probes.
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methods. All three methods perform equally well when the pro-
portion of two-copy probes is450%. However, when this pro-
portion drops, neither CGHnormaliter nor popLowess provides

satisfactory normalization. The main reason is that the assump-
tion of these two methods is violated. In contrast, PAIR can
provide satisfactory normalization even when the proportion of

two-copy probes is as low as 10%.

4 DISCUSSION

Correctly identifying reference probes in two-copy state from
the SNP array is not trivial. We propose an algorithm, PAIR,

that can accurately distinguish two-copy state probes from those
with CNAs.
The proposed PAIR algorithm first partitions the whole

genome into segments of UMS or BMS. The normal two-copy
probes, if they exist, can then be narrowed down to the segments
of UMS. This algorithm does not assume that two-copy probes

dominate the whole genome. This is an advantage compared
with the methods that require this assumption.
In contrast to the conventional methods, PAIR has the advan-

tage of being able to identify segments of cnLOH. This is pref-
erable, as the mean log-ratio values of probes in some cnLOH
segments can be different from those in normal two-copy seg-

ments, and this could cause a bias in the step of centralization
should the cnLOH segment be large. Furthermore, with the op-

tional allelic normalization, we are able to equalize the
log-intensities of A and B alleles, and thus remove one source
of false discovery.

We did not integrate log-Ratio and dalog-R analyses into the
HMM model, but instead, we adopted a two-step process.
In Part II, we applied CBS segmentation to PAlog-Ratios instead

of the raw log-Ratios. By doing so, we could substantially
reduce the computational time. Meanwhile, comparing with
the methods using log-Ratio, the risk of false detection can be

reduced if signal drift and uncorrected genomic wave exist
(Diskin et al., 2008).
We obtained the monotone relationship between log-Ratio

and dalog-Ratio, and proposed to use dalog-Ratio instead of
BAF in cnLOH detection and underlying copy number estima-
tion to avoid unnecessary data manipulation.

The proposed method reduced the computation time when
comparing with CGHnormaliter. For the samples with a large
number of segments, it takes only 3–5 min to complete the

normalization process using our method, but usually 20–30
min using CGHnormaliter, when the algorithms were run on

Lenovo T400 laptop.
CNAs are different from sample to sample, and sometimes can

be complicated. It may be difficult to fully specify all CNA forms

by a HMM model. Bearing this in mind, the proposed two-state
model, although it might miss some focal CNAs, can greatly
reduce the risk of misclassification of large segments of CNAs.

This, in our opinion, is sufficient for a normalization method to
be acceptable.
One of the assumptions of the PAIR algorithm is that there

are at least some normal two-copy heterozygous probes in the
genome that need not to be dominated. The simulation result
shows that the PAIR algorithm has almost 100% power for

correctly detecting the normal two-copy states when the

proportion of two-copy state probes are as low as 10%. In the

extreme cases where virtually no two-copy probes exist, that is,

the whole genome is in the same state, we could still determine

whether the whole genome is in one-copy gain/loss from

two-copy. It will be more challenging to accurately centralize

the probes. However, this is not the focus of this article.
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