Testing Differences in Glucose Profiles using AUC and Mixed Models

Presenter: Robbie A. Beyl, PhD
Problem Overview

Oral Glucose Tolerance test
• Subjects are given a glucose solution
• Glucose levels are measured at four time points

Goal
• Determine if treatment groups have different glucose profiles

Oral Glucose Tolerance Test

The pathologist will give you:
75 ml glucose drink

Then ask you to:
Wait 2 hours

Take blood and test glucose levels
y_{itk} denotes the response for the i^{th} treatment at the t^{th} time for the k^{th} subject

- $i = 1, 2$
- $t = 0, 60, 120, 180$

Adjust responses using baseline values for each subject

- $y_{itk} - y_{i0k}$
Area under the Curve

- Traditionally used to test differences in glucose profiles

Calculate AUC for each subject
- Trapezoid rule
 \[z_{ik} \approx y_{i2k} + y_{i3k} + \frac{1}{2} y_{i4k} \]

Test \(\mu_{z_1} = \mu_{z_2} \)
- Two sample t-test
Consider only $t = 60, 120, 180$

Mixed effect linear model
- $Y = \beta_0 + \beta_1(t) + \beta_2(t_{rt} \times t) + \epsilon$
- Unstructured covariance matrix for each subject

Test $\beta_2 = 0$
- F-test
Simulation conducted under H_0: \[
\begin{pmatrix}
\mu_{160} \\
\mu_{1120} \\
\mu_{1180}
\end{pmatrix} = \begin{pmatrix}
\mu_{260} \\
\mu_{2120} \\
\mu_{2180}
\end{pmatrix}
\]

- 25 subjects for each treatment
- 1000 replications
- Values for population mean and standard deviation at each time point based on data obtained from Pennington Biomedical Research Center
Simulations

<table>
<thead>
<tr>
<th></th>
<th>AUC</th>
<th>Mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I error</td>
<td>0.058</td>
<td>0.0062</td>
</tr>
</tbody>
</table>

AUC

Mixed p-value

AUC p-value
Crossing Profiles

<table>
<thead>
<tr>
<th>t</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>104.4</td>
<td>110.3</td>
</tr>
<tr>
<td>120</td>
<td>90</td>
<td>105.6</td>
</tr>
<tr>
<td>180</td>
<td>70</td>
<td>30.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>110.3</td>
</tr>
<tr>
<td>120</td>
<td>105.6</td>
</tr>
<tr>
<td>180</td>
<td>30.5</td>
</tr>
</tbody>
</table>

- **Treatment**
- **Control**

Graph:
- Blue line: Treatment
- Red line: Control

ASA Conference on Statistical Practice
Crossing Profiles

<table>
<thead>
<tr>
<th></th>
<th>AUC</th>
<th>Mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-value</td>
<td>0.1978</td>
<td>0.0056</td>
</tr>
</tbody>
</table>

![Graph showing glucose levels over time for Treatment and Control groups.]

Time

Glucose
Both methods can give vastly different p-value
• No cases where mixed p-value is high and a AUC p-value is low

Crossing Profiles
• P-values from mixed procedure are generally lower than those from AUC procedure

Future plans include investigating the power of these tests when crossing profiles occur
Robbie A. Beyl
Assistant Professor
Biostatistics
Pennington Biomedical Research Center
6400 Perkins Rd.
Baton Rouge, LA 70808
USA
Robbie.Beyl@pbrc.edu

Jeff H. Burton
Assistant Professor
Biostatistics
Pennington Biomedical Research Center
6400 Perkins Rd.
Baton Rouge, LA 70808
USA
Jeffrey.Burton@pbrc.edu

William D. Johnson
Professor
Biostatistics
Pennington Biomedical Research Center
6400 Perkins Rd.
Baton Rouge, LA 70808
USA
William.Johnson@pbrc.edu

Supported by 1 U54 GM104940 from the National Institute of General Medical Sciences of the National Institutes of Health which funds the Louisiana Clinical and Translational Science Center.